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1. INTRODUCTION

The discipline of operations research in the domestic sense arose on the basis of developments on
the efficiency of various controlled processes [1]. A characteristic feature of domestic developments
was the fundamental saturation of productions with mathematical models.

In this paper, the authors continue these traditions, making sure that all new approaches fit
quite well into the design of operations research.

The principle of optimality adopted in the domestic school is based on the idea of guaranteed
result when analyzing operations containing uncertainties. Much attention is paid to the order of
moves of the active participants in the operation, which made it possible to consider a wide class
of problems with a hierarchical structure.

Significant progress has been made in the development of numerical methods for solving opera-
tions research problems using penalty function methods.

The paper presents further progress in the above-mentioned areas.

2. HIERARCHY. EXAMPLES OF DEVELOPMENTS

Issues of control and decision-making in organizational systems with hierarchical structure at-
tracted much attention and have significant literature.

Let us dwell, in particular, on some examples from foreign publications.

The 2016 Nobel Prize in Economics was awarded to Oliver Hart (Harvard University, USA) and
Bengt Holmström (Massachusetts Institute of Technology, USA) for their contributions to contract
theory (where there is a leader and followers: Principal and agents), which is based on models
of interaction with a hierarchical nature. The official announcement of the award states: “The
modern economy contains an innumerable number of contracts. New theoretical tools, created by
the authors (Hart and Holmström), are valuable for understanding real contracts and institutions,
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as well as to take into account possible pitfalls in the development of contracts. Their optimal
contract analysis lays the intellectual foundation for the development of strategies and institutions
in many areas, from legislation on bankruptcy to political constitutions” [2]. Contract theory has
become an integral part of modern economic theory.

In foreign literature, when modeling hierarchical systems, Stackelberg equilibrium models are
most often used. Stackelberg’s main works were published in Austria in the 1930s. Noting the
hierarchical nature of the structure of the economy, he wrote: “. . . why should we nationalize
production, it would be better for us to nationalize the owners of the enterprises.”

Stackelberg’s ideas became more widely known in the 1950s, when his books were translated
into English [3].

Fundamental works on the analysis of conflict situations in hierarchical systems were obtained
by the school of Germeier Yu.B., a significant part is summarized in [4].

The hierarchy is seen as a natural development of the principles of optimality in game theory
and natural application to operations research problems, where the consideration is carried out in
the interests of the operating party.

The formulation of the problem of analyzing hierarchical games has attracted considerable in-
terest from a large group of researchers at the Computing Center of the Federal Research Center
of the Russian Academy of Sciences (Computing Center of the USSR Academy of Sciences) and
the Faculty of Computational Mathematics and Cybernetics of Moscow State University. The ac-
tivity demonstrated resulted in three monographs and several dozen articles in leading journals,
presentations at conferences, and applied developments in various spheres [5–11].

The work of the school attracted the attention of A.B. Rapoport, a leading researcher in systems
theory, former visiting director of the Institute for Advanced Studies in Vienna, and A.B. Rap-
poport made and published the English translation [12]. In the preface to the translation of the
book, A.B. Rapoport writes: “Beyond the Soviet Union analysis of this kind has focused primarily
on price-setting processes, where the basic structures of the game are, for the most part, quite ele-
mentary. In the work of Germeier and his students, the structure in which the process takes place
(which includes much more, than trade), was significantly expanded and diversified. Especially an
interesting topic, one to which Soviet game theorists devoted considerable attention, is the topic
of the so-called hierarchical games, which can be interpreted as models of planned economies with
varying degrees of centralization or decentralization.”

It seems that this assessment is positive on the one hand, and on the other hand played a
negative role since it shifted the emphasis of opinions of Western fellow economists, having tied the
theory of hierarchical games too much to the image of a planned economy, which has a negative
character for them. This is unfounded since the principle of a guaranteed result does not exclude
equilibrium, which is remarkably illustrated by the example of the saddle point existence theorem
in games with opposing interests.

Closely related to the current direction of operations research are the open control theory, a
review of which is published in [13], and the theory of mechanisms [14].

An example of an application can be control in large-scale projects of a multi-structured economy,
where full information support is required for making strategic decisions [15, 16].

At present, these trends are acquiring specific organizational forms: “Significant advances in
the automation of decision support systems in organizational systems have been achieved within
the framework of the System of Distributed Situation Centers (SDSC), which are considered the
technological and hardware-software basis of decision support systems. The main goal of modern
situation centers is to support decision-making processes by control based on visual representations
(images) of situations arising in the controlled environment, to provide control with a visualization
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of the results of their analysis in the most convenient form for decision-making. Not only analysis,
but also forecasting, trends in the development of the situation in the short, medium, and long
term” [17].

However, these needs were recognized quite a long time ago. 50 years ago, academician
V.M. Glushkov wrote: “We should also note that in domestic developments of the past, which
summarized the ideas of control of economic systems by that time, the question of the new sig-
nificance of information in the life of society was fundamentally raised and a three-level computer
system in the territorial aspect in a human-machine version was described, which, accumulating and
processing information, would generate draft state plans and implement decision-making functions.
The system was called the General State Automated Control System (OGAS).” [18].

3. HIERARCHICAL GAMES THEORY MODELS

The emergence of new information technologies, such as artificial intelligence, forces us to take a
new look at some problems of the theory of hierarchical systems. Many economists, both theorists
and practicing businessmen, draw attention to the relevance of this kind of research.

Recently [19, 20] a formal analogy has been established between the problem of finding weights
in deep learning of artificial neural networks and the problem of analyzing the interaction of active
elements of a multi-level hierarchical system, striving to optimize some common criterion. Probably,
the analysis of this analogy can be useful in solving both problems.

In the theory of operations research [1], the position is accepted that “an operation is a set of
purposeful actions.” The mathematical model of an operation typically includes phase variables,
uncertain factors, and control variables that generate the corresponding actions.

In classical models of hierarchical game theory [4, 8], the following assumptions are made:

• The system has a dedicated element (the Center), whose interests are identified with the
interests of the system as a whole.

• Center has the right of the first move, i.e., it is the first to choose its strategy, and this choice
becomes known to its counterparties.

• Center’s strategy may have a complex functional structure if the Center expects to receive
some information about the actions of its partners.

• It is assumed that the subordinate elements of the system act rationally, based on their own
interests within the framework of the rules determined by the Center.

• Center is cautious, i.e., it is guided by the worst for its choice of partners.

From a theoretical point of view, it should be noted that the study should combine simulation
and optimization approaches.

4. DESCRIPTION OF TECHNOLOGICAL LIMITATIONS

In this paper, linear models of controlled systems are adopted as the object of study. The
choice of the nature of the dependence is determined by the substantive and analytical possibilities
provided by the fundamental theories of balances by V.V. Leontiev and production processes by
Kantorovich and Koopmans.

The term “agent” is understood in the sense of the definition from the work [21]: “a typical
subject whose interests and awareness correspond to the role he plays in a given social system of
division of labor is called an agent. Note that in society the system of roles is structured in such a
way that the coordination of interests with roles occurs at all levels of the hierarchy, therefore, an
agent can be understood not only as an individual but also as a legal entity — an organization.”

Let’s consider a linear model of control of a complex production system.
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We will assume that the system under consideration consists of n agents. We will number them
with natural numbers from 1 to n.

Let the system produce m types of products, and let the production process use k different
types of resources. Let us assume that in the process to produce one unit of product of type j, the
ith agent spends resource of type l in the amount of pilj. The system has centralized reserves of
resources of type l in the amount of rl (l = 1, . . . , k). In addition, the ith agent has its own reserve
of such a resource. Its volume is denoted by bil .

It is assumed that the output of type j can be priced at cj .

We will assume that the cost standards are independent of the volume of production. Under
this assumption, when producing xij units of output of type j (j = 1, . . . ,m) by agent i is spent

pil1x
i
1+ pil2x

i
2+ . . .+ pilmxim units of resource of type l. For all produced goods, the agent i can earn

the sum c1x
i
1 + c2x

i
2 + . . .+ cmxim.

We will consider the prices cj to be positive. It goes without saying that the cost coefficients pilj
are non-negative. No output can be produced without any costs. Therefore, it is natural to assume
that for all i and all j at least one coefficient pi1j , . . . , p

i
kj is strictly positive. It is reasonable to

think the volumes of reserves bil and rl non-negative.

To shorten the formulas, we use matrix notations. The output vector of the ith agent
(

xi1, . . . , x
i
m

)T
will be denoted by the symbol xi (superscript “T” denotes transposition). Let

c = (c1, . . . , cm) be the price vector, and

P i =











pi11 pi12 . . . pi1m
pi21 pi22 . . . pi2m
. . . . . . . . . . . .
pik1 pik2 . . . pikm











—cost matrix. Then the cost vector yi =
(

yi1, . . . , y
i
k

)T
satisfies the condition yi = P ixi, and the

amount received by agent i for the released product is equal to cxi.

For the stock vectors, we introduce the notation bi =
(

bi1, . . . , b
i
k

)T
, r = (r1, . . . , rk)

T.

Let Y denote the set of all sets of vectors y1, y2, . . . , yn, satisfying the conditions

y1 + . . .+ yn 6 r,

yi > 0, i = 1, 2, . . . , n

(as usual, all vector inequalities are understood as component-wise).

As noted above, the issue of studying hierarchical systems is closely related to issues of central-
ization and decentralization [22, 23].

For illustrative purposes, we will give a limited consideration of some of the problems, applica-
tions of theoretical research of economic operations in organizational systems.

5. CENTRALIZED DISTRIBUTION OF RESOURCES

In this section, we will assume that there is a certain subject (Center) that controls the activities
of all agents. Namely, the Center determines the volumes of centralized resources yi allocated to
each of the agents and their output volumes xi. The goal of control will be considered to be
maximization of the total income of all agents.

Let us assume that the parameters of the system related to individual agents are not known
exactly to the Center. Such a situation can be modeled in various ways. In this case, we will
use the “interval” method. We will assume that the Center does not know the exact norms pilj
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of the supplies and the “own” stocks of the agents, but it knows only that pi−lj 6 pilj 6 pi+lj and

bi−l 6 bil 6 bi+l .

Having defined the matrices

P i− =











pi−11 pi−12 . . . pi−1m
pi−21 pi−22 . . . pi−2m
. . . . . . . . . . . .

pi−k1 pi−k2 . . . pi−km











, P i+ =











pi+11 pi+12 . . . pi+1m
pi+21 pi+22 . . . pi+2m
. . . . . . . . . . . .

pi+k1 pi+k2 . . . pi+km











,

and vectors

bi− =
(

bi−1 , . . . , bi−k

)T
, bi+ =

(

bi+1 , . . . , bi+k

)T
,

these conditions can be written more compactly as P i− 6 P i 6 P i+ and bi− 6 bi 6 bi+. Of course,
it is assumed that the matrices P i−, P i+ and the vectors bi−, bi+ are known to the Center.

It is natural to assume that the Center cannot violate the laws of conservation of “physical”
quantities, therefore, it must choose its controls in such a way that each agent has enough resources
for its own production program for any values of uncertain parameters (from given intervals).

Thus, we obtain a rather unusual optimization problem:

cx1 + cx2 + . . .+ cxn → max,

subject to constraints

P ixi 6 bi + yi, i = 1, . . . , n,

y1 + y2 + . . .+ yn 6 r, xi > 0, yi > 0, i = 1, . . . , n.

Its unusualness lies in the fact that the restrictions P ixi 6 bi + yi, i = 1, 2, . . . , n, must be sat-
isfied for any P i− 6 P i 6 P i+ and bi− 6 bi 6 bi+. Thus, formally, we obtain a problem with an
infinite number of constraints. However, this problem is easily solved.

Indeed, if the inequalities P i+xi 6 bi− + yi, i = 1, . . . , n, are satisfied, then the inequalities
P ixi 6 bi + yi, i = 1, . . . , n, will be satisfied for all P i 6 P i+ and bi− 6 bi. Of course, the con-
dition P i+xi 6 bi− + yi, i = 1, . . . , n is also necessary.

This means that the problem posed is equivalent to the standard linear programming problem

cx1 + cx2 + . . .+ cxn → max,

P i+xi 6 bi− + yi, i = 1, . . . , n,

y1 + y2 + . . . + yn 6 r, xi > 0, yi > 0, i = 1, . . . , n,

controls in which are the output vectors xi and vectors of resources allocated to agents yi

(i = 1, . . . , n).

The additional structure of this problem, associated with the presence of several agents, allows
its decomposition using the ideology of Lagrange multipliers.

According to the Kuhn–Tucker theorem, there exists a vector λ = (λ1, . . . , λk) with non-negative
components, that one of the points of maximum of the function

cx1 + cx2 + . . .+ cxn − λy1 − λy2 − . . . − λyn

under restrictions

P i+xi 6 bi− + yi, i = 1, . . . , n,

xi > 0, yi > 0, i = 1, . . . , n

is a solution to the linear programming problem under consideration.
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To find this maximum point, n “small” linear programming problems can be solved

cxi − λyi → max

P i+xi 6 bi− + yi, xi > 0, yi > 0

with controls xi and yi.

This circumstance can be used to construct iterative procedures for finding solutions to the main
problem. But in this article, the interpretation of these constructions is more important.

The number λl can be interpreted as the price of a resource of type l. This price appoints the
Center. After that, each agent chooses their own release program xi and the volume of purchased
resources yi in order to maximize its profit cxi − λyi. If the agents are friendly to the Center,
then with such a decentralized choice of control, the “general” constraint y1 + . . . + yn 6 r will be
satisfied. Otherwise, in this case, it is impossible to solve the problem by choosing prices alone,
and it is necessary to provide for some other mechanisms for coordinating the actions of agents.

Remark 1. The situation here is quite typical for linear models. Let there be several identical
enterprises capable of producing two types of products, trying to maximize their own profit. If
the prices of products are such that the first type of product is more profitable than the second,
then no one will produce the second type of product. Therefore, if the task is to produce a given
set of products, then these prices must be such that the profit from the production of both types
of products is the same. But then all the program production of any enterprise, fully loading its
capacities, will be optimal. And with independent decision-making, there are no guarantees that
the right set of products will be produced. Therefore, some mechanism for coordinating decisions is
needed. However, there are usually no particular problems here, since this mechanism will dictate
to each enterprise a choice of equally advantageous solutions.

Remark 2. If we take an admissible point
(

xi, yi
)

of last problem, then for any positive t the
point

(

txi, tyi
)

will also be admissible. But when multiplying variables by t, the criterion value will
also be multiplied by t. Consequently, the optimal value of the criterion is 0. Therefore, it makes
sense to change the sign of the criterion and talk about minimizing losses rather than maximizing
profits.

Remark 3. It is clear that for positive yil the constraint

pil1x
i
1 + pil2x

i
2 + . . .+ pilmxim 6 bil + yil

at the optimum point turns into equality. Therefore, for k > m the solution to the last problem
will be degenerate. It is very likely that when solving the problem using the simplex method,
degeneration will occur still “on the way” to the optimum.

6. DECENTRALIZED PRODUCTION WITH INDEPENDENT AGENTS

The interpretation described in Section 5 leads to the consideration of a different control scheme
for the same system.

Let there still be a dedicated party (the Center) that has the right to choose the distribution of
“common” resources y1, . . . , yn. Its goal is to maximize total production, estimated using the price
vector c. The Center makes its choice first, and this choice becomes known to all agents.

Based on the resources available to him, the ith agent chooses the output volume xi. In doing
so, he seeks to maximize the cost of released products cixi.

We will still assume that the Center knows the limits within which the coefficients of the cost
matrices P i and vectors of stocks bi (P i− 6 P i 6 P i+ and bi− 6 bi 6 bi+). In addition, the Center
knows exactly the interests of all agents (vectors ci = (ci1, . . . , c

i
m)).
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Let us introduce some notation. The set of matrices P i satisfying the conditions P i− 6 P i 6 P i+

we denote by Πi, and a set of vectors bi satisfying the constraints bi− 6 bi 6 bi+ – through Bi.

It is natural to assume that agent i knows exactly “its” matrix P i and vector bi.

Under the described assumptions, each agent solves a simple optimization problem

cixi → max, P ixi 6 bi + yi, xi > 0,

and, what is especially important, the Center, knowing the interests of the agents, is able to
correctly estimate the set BRi(yi, P i, bi) of all solutions to this problem. If he counts on the
rational behavior of all agents and is cautious about the remaining uncertainty, it must focus on
the maximal guaranteed result

sup
(y1,y2,...,yn)∈Y

min
(P 1,P 2,...,Pn)∈Π1×Π2×...×Πn

min
(b1,b2,...,bn)∈B1×B2×...×Bn

min
(x1,x2,...,xn)∈BR1(y1,P 1,b1)×BR2(y2,P 2,b2)×...×BRn(yn,Pn,bn)

(

cx1 + cx2 + . . . + cxn
)

.

Let’s try to correlate this result with the Center’s result in the problem from Section 5 (in fact,
two control schemes are considered there, but they give the same results).

Let us fix an arbitrary optimal solution y1, . . . , yn, x1, . . . , xn tasks from Section 5 and arbitrary
distribution of v1, . . . , vn resources, satisfying the constraints

v1 + v2 + . . .+ vn 6 r, vi > 0, i = 1, . . . , n.

Let zi be the optimal solution to the problem

czi → max, P i+zi 6 bi− + vi, zi > 0.

Then for any wi satisfying the conditions P i+wi 6 bi− + vi, wi > 0, the inequality cwi 6 czi

holds. In particular, the inequality cwi 6 czi holds for any wi ∈ BR(vi, P i+, bi−).

Adding these inequalities, we get cw1 + cw2 + . . . + cwn 6 cz1 + cz2 + . . .+ czn.

As shown in Section 5, for the solution of the problem considered there, the following restrictions
are satisfied:

P i+xi 6 bi− + yi, i = 1, 2, . . . , n, y1 + y2 + . . . + yn 6 r, xi > 0, yi > 0, i = 1, . . . , n.

Therefore, cz1 + cz2 + . . .+ czn 6 cx1 + cx2 + . . .+ cxn.

Then the inequality cw1 + cw2 + . . .+ cwn 6 cx1 + cx2 + . . .+ cxn is true.

Especially

min
(w1,w2,...,wn)∈BR1(w1,P 1,b1)×BR2(w2,P 2,b2)×...×BRn(wn,Pn,bn)

(

cw1 + cw2 + . . .+ cwn
)

6 cx1 + cx2 + . . . + cxn

and

min
(P 1,P 2,...,Pn)∈Π1×Π2×...×Πn

min
(b1,b2,...,bn)∈B1×B2×...×Bn

min
(w1,w2,...,wn)∈BR1(w1,P 1,b1)×BR2(w2,P 2,b2)×...×BRn(wn,Pn,bn)

(

cw1 + cw2 + . . .+ cwn
)

6 cx1 + cx2 + . . .+ cxn.
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Since the distribution of v1, v2, . . . , vn was chosen arbitrarily, it follows that

sup
(v1,v2,...,vn)∈Y

min
(P 1,P 2,...,Pn)∈Π1×Π2×...×Πn

min
(b1,b2,...,bn)∈B1×B2×...×Bn

min
(w1,w2,...,wn)∈BR1(w1,P 1,b1)×BR2(w2,P 2,b2)×...×BRn(wn,Pn,bn)

(

cw1 + cw2 + . . .+ cwn
)

6 cx1 + cx2 + . . .+ cxn.

Thus, the maximal guaranteed result of the Center in the problem from this section always does
not exceed the maximal guaranteed result of the Center in the problem from Section 5. An example
of a problem (without interpretation) in which this inequality is strict can be constructed without
much difficulty.

It has been known for a long time that in conditions of absence of uncertainty, the two considered
methods of control are equally effective. Here a new qualitative effect appears: under uncertainty,
the “economic” method of control (using resource prices) may turn out to be more effective than
the directive (using the choice of physical indicators). This effect has yet to be studied in detail.

7. FAN STRUCTURE. TWO LEVELS

In [24, 25] it is noted that the above formulated problems about distribution of some resource
by the Center can be written in a two-level system in the general form: to find

max
u∈D



 min
x∈T (u)

n
∑

j=1

kjxj



 = max
u∈D

F (u),

where

T (u) =







x|x ∈ T0(u),
n
∑

j=1

cjxj = max
y∈T0(u)

n
∑

j=1

cjyj







,

T0(u) =







x|x ∈ En, x > 0,
n
∑

j=1

aijxj = bi +
k
∑

l=1

bilul,i = 1, . . . ,m







,

D =

{

u|u ∈ En,u > 0,
k
∑

l=1

drlul 6 dr,r = 1, . . . , p

}

.

Problems in this formulation have been considered by many authors; the present statement
follows the formulation from [24].

Let us introduce the function

F0(u) =
u
∑

j=1

kjxj ,

where x ∈ T (u). This function cannot be defined for all values of u ∈ R
k, since T (u) may be the

empty set. In particular, if for all values of u the formulated problem has no solutions, then F0(u)
is not defined at all. Further, we will consider that there is u0 ∈ D such that T (u0) 6= ∅ and T (u0)
is a bounded set. If T (u) contains more than one element, then the function F0(u) can take several
values. We also introduce the notation

F (u) = min
x∈T (u)

F0(u).

The following statement is true, which allowed us to move from the maximin tasks for optimiza-
tion.
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Theorem 1 [24]. There exists δ0 > 0 such that for all δ, 0 < δ < δ0, the function

F δ
0 =

n
∑

j=1

kjxj ,

where x ∈ T δ(u), is single-valued and F (u) = F δ
0 (u),

T δ(u) =







x|x ∈ T0(u),
n
∑

j=1

(cj − δkj)xj = max
y∈T0(u)

n
∑

j=1

(cj − δkj)yj







.

Remark 4. When constructing an algorithm, the specific value of δ0 that is defined in the
theorem is not used. Only the fact of the existence of such a quantity is important.

8. FAN STRUCTURE. THREE-LEVEL SYSTEM

Let us present a simplified version of the strategic planning model [20], taking into account
the interaction of the active elements of the system. The purpose of constructing this model is to
compare different control schemes.

The prototype for this model was a system consisting of a Center, several integrated structures
(holdings), and a set of enterprises included in these holdings. There are technological links between
the elements of such a system. Enterprises, using their capacities and the resources allocated
to them, produce products and transfer them to the next level (to “their” holdings). Holdings
process them and transfer them to the Center. Organizational links are imposed on this structure:
higher-level elements determine the amounts of resources allocated to their subordinates. All these
relationships are naturally modeled by a game with a hierarchical structure.

Let us consider a model of a three-level hierarchical system consisting of a Center and two
agents.

The center selects a column vector x from the set

X = {x : x > 0, Ax 6 a} .

Here A is a matrix with non-negative coefficients, a is a column vector with positive elements.
We will additionally assume that each column of matrix A contains at least one strictly positive
element (no type products are not produced without the expenditure of at least some resources).
Matrix A and vector a are the task parameters.

Under the assumptions made, the set X is a non-empty closed convex bounded polyhedron.

Remark 5. We can consider models in which a is a vector with non-negative elements. This case
is easily reduced to the one considered with a reduction in task dimensionality.

Given a vector x, the top-level agent selects a column vector y from sets

Y (x) = {y : y > 0, By 6 x} .

Here B is a given matrix with non-negative elements that does not contain zero columns.

It is directly verified that for any x the set X(y) is non-empty convex and compact polyhedron.

Finally, if a vector y is selected, the lower-level agent selects a vector z from the set

Z(y) = {z : z > 0, Cz 6 y} .

The matrix C with non-negative elements, not containing zero columns, is again assumed to be a
task parameter.
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From the assumptions made, it follows that the set Z(y) is a non-empty closed convex and
bounded polyhedron.

The goal of the lower-level agent is to maximize the value of the function h(z) = rz, where r –
the given row vector. Similarly, the interests of the top-level agent are described as the desire to
increase the value of the function g(y) = qy, where the row vector q is considered a parameter of
the problem. Finally, we will assume that the Center’s gain is determined by function f(z) = pz,
where p is a given row vector. The elements of the vectors p, q, r will be considered non-negative.

The dimensions of the vectors a, x, y and z are assumed to be finite and, generally speaking, not
coinciding. We will assume that the dimensions of the matrices A,B,C and the vectors p, q, r are
such that all the formulas written above are formally correct (thus, these dimensions are determined
uniquely).

We assume that all parameters of the system, i.e., matrices A,B,C and vectors p, q, r are exactly
known to the Center.

The following decision-making procedure is proposed. First, the Center selects its strategy x
from the set X. Then the top-level agent chooses its strategy y from the set Y (x). And finally, the
lower-level agent chooses strategy z from sets Z(y).

Given the assumptions made, it is natural for the top-level agent to choose its strategy from the
set

BRt(x) =

{

y ∈ Y (x) : g(y) = max
v∈Y (x)

g(v)

}

.

Similarly, all reasonable choices of the lower-level agent and only these belong to the set

BRl(y) =

{

z ∈ Z(y) : h(z) = max
w∈Z(y)

h(w)

}

.

Under the assumptions made, for any x ∈ X the maximum in definition of the set BRt(x) is
achieved, and the set BRt(x) itself is a non-empty convex and compact polyhedron. Similarly,
for any vector y with non-negative components, the set BRl(y) is non-empty convex closed and
bounded polyhedron.

If the Center knows the parameters of the model, it is able to independently evaluate sets BRt(x)
and BRl(y). The Center cannot more accurately estimate the set of possible choices of agents. If the
Center is cautious, then its maximal guaranteed result is

sup
x∈X

min
y∈BRt(x)

min
z∈BRl(y)

f(z).

We will deal with the problem of calculating this value.

From the above, it follows that the minimums in the last formula are achieved. The attainability
of the upper bound will have to be investigated separately.

9. EQUIVALENT PROBLEM

The constraints y ∈ BRt(x) and z ∈ BRl(y) are not standard: they contain (previously un-
known) maxima of the functions. At least for some purposes, these limitations should be eliminated,
even at the cost of increasing the dimension of the problem. Let’s do it.

Let x ∈ X be given. For v ∈ Y (x) and w ∈ Z(y) we define the sets

V (x, v) = {y ∈ Y (x) : qy > qv} ,

W (y,w) = {z ∈ Z(y) : rz > rw} .
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For all x, y, v, w the sets V (x, v) and W (y,w) are compact convex polyhedra.

For any w ∈ Z(y) and any z ∈ BRl(y) the inequality rz > rw holds, i.e., the inclusion BRl(y) ⊆
W (y,w) is valid. Therefore,

min
z∈BRl(y)

f(z) > min
z∈W (y,w)

f(z),

and due to the arbitrariness of w ∈ Z(y) the inequality

min
z∈BRl(y)

f(z) > sup
w∈Z(y)

min
z∈W (y,w)

f(z)

holds.

Let’s choose now w′ ∈ Z(y) so that w′ ∈ BRl(y). Then by definition we have W (y,w′) = BRl(y).
Hence,

min
z∈BRl(y)

f(z) = min
z∈W (y,w′)

f(z)

and even more so
min

z∈BRl(y)
f(z) 6 sup

w∈Z(y)
min

z∈W (y,w)
f(z).

Therefore, the upper bound in the last formula is achieved, and

min
z∈BRl(y)

f(z) = max
w∈Z(y)

min
z∈W (y,w)

f(z).

Similarly, for any v ∈ Y (x) and any y ∈ BRt(x) the inequality qy > qv, holds. i.e., the inclusion
BRt(x) ⊆ V (x, v) is valid. Therefore,

min
y∈BRt(x)

max
w∈Z(y)

min
z∈W (y,w)

f(z) > min
y∈V (x,v)

max
w∈Z(y)

min
z∈W (y,w)

f(z)

and due to the arbitrariness of v ∈ Y (x) the inequality

min
y∈BRt(x)

max
w∈Z(y)

min
z∈W (y,w)

f(z) > sup
v∈Y (x)

min
y∈V (x,v)

max
w∈Z(y)

min
z∈W (y,w)

f(z)

holds.

Let’s choose now v′ ∈ Y (x) so that v′ ∈ BRt(x). Then V (x, v′) = BRt(x) and that’s why

min
y∈BRt(x)

max
w∈Z(y)

min
z∈W (y,w)

f(z) = min
y∈V (x,v′)

max
w∈Z(y)

min
z∈W (y,w)

f(z).

Especially
min

y∈BRt(x)
max

w∈Z(y)
min

z∈W (y,w)
f(z) 6 sup

v∈Y (x)
min

y∈V (x,v)
max

w∈Z(y)
min

z∈W (y,w)
f(z).

This means that the upper bound in the last formula is achieved and the equalities

min
y∈BRt(x)

max
w∈Z(y)

min
z∈W (y,w)

f(z) = max
v∈Y (x)

min
y∈V (x,v)

max
w∈Z(y)

min
z∈W (y,w)

f(z),

or
min

y∈BRt(x)
min

z∈BRl(y)
f(z) = max

v∈Y (x)
min

y∈V (x,v)
max

w∈Z(y)
min

z∈W (y,w)
f(z)

are satisfied.

Due to the arbitrariness of x ∈ X we get from here

sup
x∈X

min
y∈BRt(x)

min
z∈BRl(y)

f(z) = sup
x∈X

max
v∈Y (x)

min
y∈V (x,v)

max
w∈Z(y)

min
z∈W (y,w)

f(z).
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The problems of calculating the maximal guaranteed result in such cases are extremely complex.
Therefore, it seems that the presence of two different calculation methods would be useful, even if
neither of them is very effective on its own.

In addition, the obtained result allows us to more adequately assess the complexity of the
problem being solved.

10. EXISTENCE OF A SOLUTION

Let us formulate some preliminary results.

Let x ∈ R. The system of linear inequalities Ax 6 a defines a certain set of points P =
{x : Ax 6 a}. If this set is not empty, then it is a polyhedron. For simplicity, we will assume
that this set is not empty and bounded. Then it is compact.

Let ai (i = 1, . . . , k) be the rows of the matrix A, and ai be the components of the column
vector a. For points x ∈ P we define a set I(x) of indices i = 1, 2, . . . , d, for which aix = ai. Let
J(x) = {1, , k} \ I(x).

Let I ⊂ {1, . . . , k}. If the set PI = {x ∈ P : I(x) = I} is not empty, then it is a face of the
polyhedron P. If the set I is such that the system of vectors ai, i ∈ I, contains d linearly independent
vectors, then the set PI is either empty or consists of one point. In the latter case, this point is the
vertex of the polyhedron P.

Let LI be the linear span of the set PI . Then the face PI is an open subset of the space LI

(in the topology induced by the Euclidean topology on R
d), since it is defined by a system of strict

inequalities aix < ai, i ∈ J(y) for some point y ∈ PI .

The polyhedron P is the union of its pairwise non-intersecting faces.

Lemma 1. The closure of any face PI of a polyhedron P contains at least one vertex of this

polyhedron.

The proof of the lemma is contained in the Appendix.

In the future, the following version of the Lagrange multiplier principle will be used.

Lemma 2. Let x ∈ P. Point x is the maximum of function px on set P if and only if there exist

non-negative numbers λi, i ∈ I(x), such that p =
∑

i∈I(x) λ
iai.

The proof of the lemma is given in the Appendix.

Now let’s get back to the main task.

The outcome (x, y, z) will be called semi-optimal if y ∈ BRt(x), z ∈ BRl(y) and f(z) =
min

z′∈BRl(y)
f(z′). By definition, the maximal guaranteed result of the Center is equal to the exact

upper bound of the function f(z) by the set of all semi-optimal outcomes (x, y, z).

Let’s consider a polyhedron

P = {(x, y, z) : x > 0, Ax 6 a, y > 0, By 6 x, z > 0, Cz 6 y}.

Let the outcome (x, y, z) ∈ P be semi-optimal. We will show that then every outcome (x′, y′, z′),
belonging to the face PI(x,y,z) of the polyhedron P, containing the point (x, y, z), is semi-optimal.

Let’s consider polyhedra

Π(x) = {(y, z) : y > 0, By 6 x, z > 0, Cz 6 y}

and

Π(x′) = {(y, z) : y > 0, By 6 x′, z > 0, Cz 6 y}.
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We denote x̄ = (y, z), x̄′ = (y′, z′), and the inequalities defining the polyhedron Π(x) we write it
in the form Āx̄ 6 ā(x), where Ā is some matrix, and ā(x) is some vector. Then the polyhedron Π(x′)
will be defined by the inequalities Āx̄ 6 ā(x′) with the same matrix Ā and possibly a different
vector ā(x′).

Let āi be the rows of matrix Ā, āi(x) and āi(x
′) be elements of the vectors ā(x) and ā(x′),

respectively, and I(x̄) is the set of all indices i for which the equalities āix̄ = āi(x) are satisfied.
Since the outcomes (x, y, z) and (x′, y′, z′) belong to the same face of the polyhedron P, for the
same indices the equalities āix̄′ = āi(x

′) are satisfied.

By virtue of the necessary condition of Lemma 2 and the inclusion y ∈ BRt(x) there exist such
non-negative numbers λi, i ∈ I(x), such that q =

∑

i∈I(x̄) λ
iāi. But then, by virtue of the sufficient

condition of Lemma 2, the inclusion y′ ∈ BRt(x′) holds.

Finally, let’s consider polyhedra

Π′(y) = {z : z > 0, Cz 6 y}

and
Π′(y′) = {z : z > 0, Cz 6 y′}.

Repeating the same reasoning using these polyhedra, we will see that the inclusion z′ ∈ BRl(y′)
is valid.

Let’s now consider polyhedra

Π′′(y, z) = {z′′ : z′′ > 0, Cz′′ 6 y, rz′′ = rz}

and
Π′′(y′, z′) = {z′′ : z′′ > 0, Cz′′ 6 y′, rz′′ = rz′}.

Repeating the same reasoning again, but using the polyhedra Π′′(y, z) and Π′′(y′, z′), we arrive
at the equality f(z′) = minz′′∈BRl(y′) f(z

′′).

Thus, the outcome (x′, y′, z′) is semi-optimal.

By continuity, if the outcome (x, y, z), is semi-optimal, then all outcomes from the closure of the
face PI(x,y,z) of the polyhedron P, containing the point (x, y, z) will be semi-optimal.

But the closure of any face of a polyhedron is itself a closed polyhedron. Therefore, the maximum
of the linear function f(z) = pz on the closure of any face is necessarily achieved at one of the
vertices of the polyhedron. Therefore, for any of the semi-optimal outcome (x, y, z) there exists a
vertex (x′, y′, z′), which is the semi-optimal outcome, and in addition, pz′ > pz.

And since the set of vertices of the polyhedron P is finite, the upper bound

sup
x∈X

min
y∈BRt(x)

min
z∈BRl(y)

f(z)

is certainly achieved, and at such a point x, that there exist such y ∈ Y (x) and z ∈ Z(y), for which
the triple (x, y, z) is a vertex of the polyhedron P.

Testing for semi-optimality is a procedure comparable in complexity to one step of the simplex
method. Therefore, the obtained results reduce the problem under consideration to enumeration
of all the vertices of the polyhedron P.

In general, it is probably impossible to avoid such an exhaustive search. Therefore, analyzing a
truly serious model in this way is hardly possible. But the study of truly serious models is usually
carried out in several stages, the first of which is the study of a simplified model. At this stage,
it will most likely be possible to obtain an exact solution to the problem using enumeration. And
then one can use some heuristic methods (like the branch and bound method), taking into account
the specifics of a particular model.
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11. CONCLUSION

The paper presents further advances in the applications of hierarchical games in modeling con-
trolled processes based on linear dependencies.

The results obtained will undoubtedly be included in the toolkit of operations research and
formalized approaches in decision-making theory.

It was noted above that the problem of analyzing a linear hierarchical game is reduced to enu-
merating the vertices of a certain polyhedron, the number of which may be quite large. Therefore,
for the numerical solution of the formulated problems, it is necessary to involve various approximate
methods, which will be the subject of further developments.

APPENDIX

Proof of Lemma 1. If PI is a vertex, then everything is obvious. Otherwise the set PI is open
(in LI), and its closure is closed. Therefore, there exists a point y belonging to the closure but not
belonging to the face PI itself. Let x ∈ PI .

Then I(x) ⊆ I(y). Indeed, if the equality aix = ai, i ∈ I(x), is true, then for any z ∈ PI the
equality aiz = ai is also true. And then, by continuity, the equality aiy = ai is valid. Since y /∈ I,
the inclusion I(x) ⊆ I(y) is strict.

In fact, the set I(y) contains an index j such that the vector aj is not linearly dependent on the
vectors ai, i ∈ I(x). Indeed, let j belong to I(y), but not belongs to I(x). Suppose the vector aj is
linearly expressed through the vectors ai, i ∈ I(x). Then from the equalities aix = ai follows the
equality ajx = aj , which contradicts the condition j /∈ I(x).

The face PI(y) belongs to the closure of the face PI . The same reasoning can be applied to the
face PI(y), further expanding the set I(y). But since the set 1, 2, . . . , k is finite, such a procedure
cannot continue indefinitely. So, at some point we will come to face, which is the vertex. It will be
the one we are looking for.

The lemma is proven.

Proof of Lemma 2. Necessity. By virtue of the Kuhn–Tucker theorem, there exist non-negative
numbers λi, for which p =

∑k
i=1 λ

iai. On the strength of the conditions of complementary slackness
λi = 0 for i ∈ J(x). Therefore, p =

∑

i∈I(x)
λiai.

Sufficiency. Let y be an arbitrary point of the set P. Then

py =
∑

i∈I(x)

λiaiy 6
∑

i∈I(x)

λiai =
∑

i∈I(x)

λiaix = px.

By definition, this means that x is a maximum point.
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